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Abstract 

An explicit expression is given for the anharmonic 
temperature factor that is gained from an isolated- 
atom potential in the classical regime. Since the 
Boltzmann function is not generally suited to form a 
probability density function (p.d.f.) and its Fourier 
transform is generally unknown, a meaningful p.d.f. 
can be obtained by expanding the anharmonic terms 
into a series. The Fourier transform of this series, i.e. 
the temperature factor, is derived up to any number 
of desired terms. These series are valid for any covari- 
ance matrix and for every crystal metric; site- 
symmetry restrictions can be imposed. Higher powers 
of the potential parameters can be introduced. The 
series given for the temperature factor does not 
require the cumbersome solution of Fourier integrals. 
For cubic site symmetry, the low-order terms in h 
containing the nth power of the cubic/3 and 3' para- 
meters are derived explicitly. The terms wi th /3"(n  = 
1 , . . . ,  16) and 3~"(n = 1 , . . . ,  6) ar~ evaluated numeri- 
cally in one example. From a certain power onwards, 
divergence is observed in all terms. It is shown that 
divergence is in general to be expected for both the 
expansions of the temperature factor and the p.d.f. 
The mere expansion by a power higher neither 
necessarily leads to a better approximation of the 
Boltzmann function nor necessarily constitutes a bet- 
ter p.d.f. It is concluded that expansions containing 
different powers of the potential parameters are 
equally justified unless the examination in a particular 
problem with the available set of experimental data 
has shown that a certain expansion is the best. 

I. Introduction 

In several papers on anharmonic motions of atoms, 
a temperature factor is used that is derived from an 
effective one-particle potential, abbreviated as OPP 
(Dawson, Hurley & Maslen, 1967), or, what is in 
essence the same, from an isolated-atom potential, 
abbreviated as IAP (Willis, 1969). For applications 
see Mair, Barnea, Cooper & Rouse (1974), Willis & 
Pryor (1975), Mair & Barnea (1975), Matsubara 
(1975a, b), Harada,  Suzuki & Hoshino (1976), 
Merisalo & Larsen (1977, 1979), Whiteley, Moss & 

Barnea (1978), Moss, McMullan & Koetzle (1980), 
Field (1982), Kontio & Stevens (1982), Zucker & 
Schulz (1982) and other authors. Usually, in the prob- 
ability density function - abbreviated p.d.f. - the 
anharmonic terms of the potential are expanded into 
a (truncated) series, and the conditions of site sym- 
metry are imposed. The temperature factor is the 
Fourier transform of this series, and its evaluation 
usually requires a cumbersome solution of Fourier 
integrals. For cubic site symmetry, the lAP tem- 
perature factor was first given by Willis (1969) (up 
to fourth-order terms), for site symmetry 3m in the 
hexagonal system by Mair & Barnea (197.5) (up to 
third-order terms), see also Whiteley, Moss & Barnea 
(1978), for tetragonal site symmetry by Nishiwaki, 
Sakata & Harada (1979) (up to fourth-order terms) 
and for site symmetry 6m2 by Merisalo & Larsen 
(1977) (up to fourth-order terms). For cubic site sym- 
metry, Mair & Wilkins (1976) have derived the tem- 
perature factor (up to sixth-order terms) from con- 
sideration of quantum statistics. Willis's (1969) treat- 
ment has recently been extended for any site sym- 
metry (up to fourth order terms) by Tanaka & 
Marumo (1983). 

Recently, Mair (1980a) has derived a more general 
formula for the OPP temperature factor through a 
perturbation expansion about the harmonic Hamil- 
tonian, and has illustrated the power of her formula 
for the specific case of cubic site symmetry. In par- 
ticular, Mair determined contributions that are quad- 
ratic in the cubic/3 parameter and have been over- 
looked by other authors. However, Mair's (1980a) 
temperature factor (8), (9) and (14) is in exponential 
form and is not the exact Fourier transform of the 
Boltzmann distribution;* see the Appendix. Still, it 

* Some of the predominantly mathematical material of this paper 
has been deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 39686 (12pp.). This material 
refers to the following topics: derivation of equation (4) for the 
temperature factor, derivation of equation (18) for Z,, proof that 
series expansions of the Boltzmann function are always divergent, 
proof that Mair's (1980a) temperature factor is not the Fourier 
transform of the Boltzmann function, numerical data (Table 1) 
referring to the higher powers of the potential parameters of A1 
in the structure of VAI ~o.42- Copies may be obtained through The 
Executive Secretary, International Union of Crystallography, 5 
Abbey Square, Chester CHI 2HU, England. 

0108-7673/85/010073-07501.50 O 1985 International Union of Crystallography 
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is justified to ask how meaningful higher powers of 
the potential parameters are in series expansions. 
Since Mair, Barnea, Cooper & Rouse (1974) and Mair 
(1980a) have introduced the /32 terms in the tem- 
perature factor for cubic site symmetry, it is com- 
monly stated that this extended form of the tem- 
perature factor is more accurate than the one derived 
by Willis (1969) (which contains only a term linear 
in/3), because the/32 terms may be ofthe same order 
of magnitude as the corresponding terms linear in 3,. 
We shall examine the validity of this statement in this 
paper. 

This paper will give a general expression for the 
anharmonic temperature factor with the following 
aims: (1) to constitute and maintain the exact Fourier 
transform relation between p.d.f, and temperature 
factor; (2) to formulate the temperature factor for 
any covariance matrix and for every crystal metric 
(so that it can easily be programmed); (3) to give a 
series for the p.d.f, and the temperature factor for 
any desired order of terms; (4) to establish the possi- 
bility of introducing higher powers of the potential 
parameters; (5) to make the solution of Fourier 
integrals superfluous. 

2. The p.d.f, and the temperature factor 

In the IAP approach, the origin for the displacements 
u of an atom is conceptually given by the minimum 
of the potential for this atom. For the p.d.f, actually 
used [see below, equation (3)], it can only be derived 
that the origin for u is located at the maximum of the 
p.d.f. (which does not necessarily coincide with the 
minimum of a potential). In order to make our nota- 
tion more efficient for what follows, we do not use 
the commonly used symbols a,/3, y, 6 for the potential 
parameters, but rather denote these by tensor com- 
ponents A0, Aqk and Aok t. These are covariant to the 
base vectors of the crystal and also contain the factor 
(ksT) -~. kB is Boltzmann's constant and T the 
absolute temperature. Then the IAP is given by 

V(u) = kBT[~ (lpo ÷ Ao)uiuJ ÷ ~Ok AokUiuJuk 

+ ~ Aoktu~uJukut + " "  1' (1) 
Okl 

where Pij denote the harmonic components and A 0 
the anharmonic second-order components [as they 
may arise from a unit-cell-potential approach 
(Scheringer, 1977) or from consideration of quantum 
statistics (Mair & Wilkins, 1976)]. The atomic dis- 
placements u i, i = l, 2, 3 for the three directions of 
space, are counted in lattice units (as are the potential 
parameters). In the classical regime, the p.d.f, is 
obtained from the potential according to the 

Boltzmann distribution, i.e. 

f(u)  = C exp[-V(u)/(kBT)] ,  (2) 

where C is the normalization constant. In order to 
avoid divergence for large values of u, we expand the 
anharmonic terms in (2) into a series in the linear 
approximation exp x -- l + x, i.e. 

f(u)=g--~)- [ 1 - E  A o u i u J - E  AokUiUJu k 
q Ok 

-- iEjkl Aijkltlil,,lJtikti l -  . . .  ] , (3) 

P is chosen so that f(u)  is normalized (to one). g(u) 
denotes the Gaussian p.d.f, that results from the har- 
monic parameters P0 of (1), i.e. p-~ is the covariance 
matrix of g(u). Let 

-+oc 

f g(u) du = Vo. 
--oO 

We denote the Miller indices by hi or h, respectively, 
and x / - l =  i. The temperature factor is the Fourier 
transform of f(u)  and, with (3), has the form of a 
series, i.e. 

T ( h ) = g ( h ) - ~  1 -  .. AoG°(h)+ ~AukG°k(h)  

+i4EjktaijktGOkt(h)+...]], (4) 

with correspondingly higher terms in (3) and (4). g(h) 
is the harmonic temperature factor. We now explain 
what the functions G and P in (4) mean and how 
they can be calculated. G °, G °k, GiJkt,... a r e  Hermite 
polynomial tensors that are contravariant to the crys- 
tal base vectors, and are analogously defined as the 
covariant Hermite polynomial tensors in International 
Tables for X-ray Crystallography ( i 974, pp. 316-317). 
To specify the G polynomials in detail we denote 
tr = p-~ and define the vector t according to 

3 

t i = 27r Y~ o-i'hm (5) 
m = l  

and obtain 

(~0 -- titJ _ frO, 
(6) 

GiJ k = titJt k _ rio 3k _ tJo .ik _ tko.O 

etc., cf the corresponding expressions in International 
Tables for X-ray Crystallography (1974, p. 316). The 
derivation of (4), in conjunction with (5) and (6), has 
been deposited.* Comparison of the IAP series (3) 
and the temperature factor (4) with the Gram-Char- 
lier series and its Fourier transform (International 
Tables for X-ray Crystallography, 1974, pp. 316-317) 

* See deposition footnote. 
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shows that the two approaches essentially differ in 
that the power series and the Hermite polynomial 
series are exchanged in direct and reciprocal space. 
Since P in (4) normalizes f(u)  (to one), we can obtain 
P from the Fourier transform of f(u) at the position 
h = 0. Thus we obtain the condition T(h = 0)=  1 or 

P= Po[1-(i202-t-i404q-... )]. (7) 

02, O4, . . .  are the constant terms in (4), which do 
not depend on h and arise when the summations in 
(4) are carried out. Potential terms with odd powers 
of u i do not contribute to P. 

In actual practice one may prefer not to use (4) 
directly, but rather insert (5) and (6) into (4) and 
evaluate the sums as far as possible. Furthermore, (4) 
can be simplified with the use of (7). We write out 
the constant terms in (4), divide by P and order the 
terms according to powers of hi. Then the series (4) 
assumes the form 

T(h) = g(h) 1 - - f f  27ri ~ Wihi 

q- (27ri)2 E WiJhihj 
ij 

d-(27ri) 3 E wijkhihjhk 
ijk 

ijkl 
(8) 

Barnea's (1975) equation (14) (the sign of Mair & 
Barnea's/31 term should be reversed) if we first write 
down the series (4) and then reorder it to the form 
(8). [The results of these authors are given in a form 
which corresponds to (8).] Since in (4) and (8) all 
indices have to be summed from 1 to 3, one has to 
observe that the multiplicities m of the A tensors are 
correctly taken into account if they are expressed by 
the potential parameters/3, 7 and 8 as used by these 
authors. According to the definition of/3, 3' and 8 
by Willis (1969) we have: Al23 =/3/(6kBT) since m = 
6; Allll  = A2222 = A3333 = (3"+26)/(ksT); Al122 = 
A~m=AEE33=E(y-ad)/(kBT) since m(A~22)=6 
and (u lu2)  2 appears twice. With site symmetry 3m in 
the hexagonal system the following restrictions are 
valid for the potential parameters (International 
Tables for X-ray Crystallography, 1974, Table 5.5C, 
row C37"): A122 = _AII2, A223 = Al13 ' A123 = _~AI13 . 1  
m (A ~ ~2) = m (A ~ ~ 3) = 3. According to the definition by 
Mair & Barnea (1975) of /3~/32 and /33 we have: 
All2=/31/(3kBT), Al13=/32/(3kBT), A333 = 
/33/(k~T). Since Willis (1969) and Mair & Barnea 
(1975) count the atomic displacements in A but we 
in lattice units, one has to transform the potential 
parameters correspondingly further. In our results for 
the temperature factor this implies that the Miller 
indices have to be divided by the corresponding lattice 
constants. 

The contravariant components of the W tensors are 
functions of the anharmonic potential parameters A U, 
Aijk, Aijkl,... and of the variance-covariance matrix 
tr, according to (4), (5) and (6). 

Merisalo & Larsen (1977, equation 5) and Kurki- 
Suonio, Merisalo & Peltonen (1979, equations 27 and 
28) used a Fourier-invariant Fourier transform rela- 
tion with Hermite polynomials, which seems to 
contradict our equations (3) and (4) as well as 
equations (2) and (9) of International Tables for X-ray 
Crystallography ( 1974, ch. 5.2.3). We found, however, 
that both transform relations are correct. There are 
two different definitions of Hermite polynomials, 
which are usually not distinguished as such, but which 
lead to different coefficients in the polynomials. Both 
definitions are given by Magnus, Oberhettinger & 
Soni (1966, pp. 249-250). The one-dimensional 
Fourier-invariant relation is given by Titchmarsh 
(1948, p. 76, equation 3.5.1 and p. 81, theorem 57) 
and the one-dimensional non-invariant relation by 
Kendall & Stuart (1969, p. 157). 

3. Comparison with results from the literature 

The results of Willis (1969) and Mair & Barnea (1975) 

For cubic site symmetry, we obtain Willis's (1969) 
equation (4.11), and for site symmetry 3m Mair & 

Results obtained from quantum statistics 

Mair & Wilkins (1976, equations 19-21) have 
derived a p.d.f, for cubic site symmetry on the basis 
of quantum statistics and have determined the tem- 
perature factor as the Fourier transform of this p.d.f. 
In addition, Mair (1980b, Table l) has listed contribu- 
tions to the temperature factor for an OPP model. 
Mair & Wilkins (1976) have formulated the normali- 
zation condition in a manner different from ours in 
(3). Their p.d.f, contains an anharmonic second-order 
term, which classically is not obtained in an OPP 
model but in a unit-cell-potential approach (Scherin- 
ge l  1977). The number of expansion coefficients in 
Mair & Wilkins's p.d.f. (19) and temperature factor 
(20) and (21) is the same as in our expressions (3) 
and (4) (for the square of the third-order term see 
§ 4), but the meaning of the coefficients is different, 
particularly with respect to dependence on tem- 
perature. The same conclusion can be drawn by 
inspecting Mair's (1980b) Table 1. Thus, in general, 
the examination of quantum statistics does not pro- 
duce new terms beyond those given in (3) and (4). 
The reason is that a tensor formulation up to a given 
power of u is mathematically complete and cannot 
be extended by more profound physical arguments. 
Such arguments at most give rise to a change in the 
meaning of the expansion coefficients. 
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4. Higher powers of the potential parameters 

In (3) we have terminated the expansion after the 
terms linear in the anharmonic potential parameters, 
and we now show how one can use (3) and (4) to 
take into account higher powers of the potential para- 
meters. In (3), one has to express the higher powers 
of the potential parameters by linear parameters of 
correspondingly higher order. This then constrains 
these linear parameters without affecting, however, 
the formal application of the Fourier transform rela- 
tion (3) and (4). Thus, one can use (3) and (4) but 
has to expand to correspondingly higher terms. Since 
all terms (3) and (4) have a minus sign and since in 
the expansion to even powers a plus sign arises, one 
has to observe this change of sign when using (3) and 
(4). In order to demonstrate the effect of the higher 
powers of the potential parameters, we shall restrict 
ourselves in what follows to the case of cubic site 
symmetry. 

To illustrate in detail the method of our calculation, 
we first calculate the/32 terms that were already found 
by other authors./32 terms are of sixth order in u and, 
by the definition of the A tensors in (1), we obtain 
the restriction 90 A112233 ~-- -½(6AI23) 2, because 
m(Al12233)=90 and m(A123)=6. Hence, we also 
obtain ½fl2/(kBT)2= -90  A112233. With (3) and (4), the 
/32 terms in the temperature factor are then given by 

i6g(h ) P0 132 Gii2233(h). 
p 2(kBT) 2 (9) 

Writing out the G polynomial in (9), observing o-" -- 
. .  

k~T/o~ and o -'s =0,  gives exactly the same terms 
(except for the factor Po/P),  which one obtains by 
expanding Mair's (1980a) equation (14) correctly to 
quadratic terms in her A parameter. The p.d.f, to 
Mair's A 2 expansion is given in the deposited 
material.* 

The /32 terms given by Mair, Barnea, Cooper & 
Rouse (1974) and by Kontio & Stevens (1982) are all 
reproduced by (9). However, (9) also produces a 

2 1 2  2 h ! h2h3 term which is not given by these authors. Thus, 
we conclude that equation (6) of Kontio & Stevens 
(1982) is not the Fourier transform of their equations 
(3) and (5). The p.d.f, to equation (6) of Kontio & 
Stevens can be established, if the inverse Fourier 

1~21~2 l~ 2 transform to the missing 1,~1,2,,3 term is subtracted 
from the p.d.f. (which is expanded to /32). With a 
non-diagonal covariance matrix and in a general 
metric, such a procedure is no longer possible• This 
example shows that omission of the higher terms in 
h (which are obtained from the G polynomials) can- 
not be recommended, for then the Fourier transform 
relation, expressed in (3) and (4), is invalidated and 
the p.d.f, can no longer be calculated. 

* See deposition footnote. 

In the following we give general expressions for 
the zero- to fourth-order terms in h with higher powers 
of /3 and 3' and calculate some numerical values. 
Terms with even powers of/3 are obtained from the 
G polynomials of order 3n with three different 
indices, each of which occurs n times, n is even. 
Evaluation of these polynomials yields for the zero- 
order terms in h 

- -  Z 3, s = ~ ,  n even, (10) 

for the second-order terms in h 

- -  - -  Z . . I Z . , 2  

x(h~+h22+h~),  s l = n / 2 - 1 ,  

s2 = n/2 ,  n even, 

and for the fourth-order terms in h 

(11) 

/'/-"~l ( k ' ~ )  n(kBz)(3n+4)/2- ( ~-2-'--~- 
• \ a / \ a o /  

x ( h  2 2 2 2 2 2 th2+hlh3+h2h3), 
Sl = n / 2 -  1, s3 = n/2,  

4 
2 Z,,,,Z,,,3 

n even, (12) 

and 

x ( h a + h a + h 4 ) ,  

s 1 = n / 2 - 2 ,  s 2 = n / 2 ,  n>-4, n even. (13) 

The values of Z,, are calculated from (18) below with 
the given values of s. s, refers to Z,,I, s2 to Z,,2 and 
s3 to Z,,3. The common factor g(h)Po /P  is not given 
in (10) to (13) but the minus sign in (4) has been 
taken into account. For the odd powers of/3 we only 
give the terms with hlh2h3. They are obtained from 
G polynomials of order 3n according to 

~BT - -  (2____~ Z3nh h2h3, (14) \ a / \ a o /  1 

s=(n-1)/2, nodd. 

Each of the expressions (10) to (14) has the same 
sign for all values of n. 

The terms with the higher powers of 3/are derived 
from G polynomials of order 4n. We restrict ourselves 
to G polynomials with equal indices. For the zero- 
order terms in h we obtain 

n!  3 Z 4 ,  , s =2n, 

(15) 
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for the second-order terms in h 

2 2 ×Z4n(hlWh2-Fh2), s = 2 n - 1 ,  

and for the fourth-order terms in h 

×Za,,(h4+h~+h4), s = 2 n - 2 .  

Z,  is obtained as follows.* 

(16) 

(17) 

n~ 
Z , -  (18) 2S(n -2s) !s ! '  

where s denotes the number of tr U factors in a given 
term of a G polynomial. We do not calculate the 
terms that arise from G polynomials with mixed 
indices because their coefficients Z are more difficult 
to determine. Since o- is diagonal these coefficients 
are smaller than Z4,. Hence, the expansions (15) to 
(17) represent the main contributions. As for (10) to 
(17), the t~rms with orders higher than four in h can 
also be given. 

We have calculated numerical values for (10) to 
(17) with the potential parameters of Kontio & 
Stevens (1982) and with T = 2 9 3 K ;  (10) to (13) up 
to n = 16, (14) up to n = 13, and (15) to (17) up to 
n = 6.* The most important result is the following: 
from a certain power n onwards, divergence is ob- 
served for all terms. Thus, none of the expressions 
(10) to (17) converges to zero for increasing n. For- 
mally, the divergence arises from the fact that, for 
larger values of n, the greatly increasing coefficients 
Z begin to dominate.* Since Z4, represents the full 
number of terms and, with tr diagonal, Z 3<Z3 . ,  
Z.,,Z2.,2 < Z3. ,  2 Z,,,1Z,,,3 < Z3,, divergence is most pro- 
nounced with the y" terms. In the expression (17), it 
already begins with n = 2.* 

For low site symmetry and for a non-diagonal 
covariance matrix, the temperature factor is still 
unambiguously described by the G polynomials when 
higher powers of the potential parameters are 
included in the p.d.f. (3). But as can be seen from 
(18), the number of terms, Z,, grows rapidly as n 
increases. Thus, for n > 6 and for low site symmetry, 
the terms of the G polynomials cannot usually be 
written out explicitly. The necessary permutations of 
the indices should then be generated in the computer 
and the terms summed up numerically. 

5. Analysis of divergence 

The divergence observed in our example did not 
happen by chance. It is ultimately caused by the fact 

* See deposition footnote. 

that, with the potential expansion (1), the Boltzmann 
function (2) can be divergent, i.e. f (u)  -> ~ for u --> oo. 
For cubic site symmetry, divergence occurs if only a 
/3 parameter is used (Matsubara, 1975a, b) or if y is 
negative. A one-dimensional Boltzmann distribution 
converges only (i.e. f (u)  -> 0 for u --> oo) if the highest 
power of u is even and if the coefficient of the highest 
power is negative. For a three-dimensional Boltzmann 
distribution this result holds correspondingly. The 
signs of the several terms of the highest power in u 
(which must be even) have to be inspected. Diver- 
gence is likely to occur more frequently than conver- 
gence because the condition for convergence is more 
rigorous (the sphere in u must be 'tight' everywhere). 
When divergence occurs, the Boltzmann distribution 
(2) does not establish a p.d.f, and the Fourier trans- 
form of (2), in the integral definition, does not exist 
and, thus, a temperature factor cannot be derived. 

A finite series expansion (3), containing higher 
powers of the potential parameters, always has a finite 
integral and, hence, its Fourier transform always 
exists. (The expansion may have negative regions and 
thus may not entirely fulfil the requirements for a 
p.d.f.) However, the Boltzmann function can never 
be approximated sufficiently closely by a series 
expansion with any powers of the potential param- 
eters. This is true for a divergent and a convergent 
Boltzmann function.* The reason is that the absolute 
values of the coefficients in the series are the same 
for both a divergent and a convergent Boltzmann 
function. Since the series is also designed to approxi- 
mate the divergent Boltzmann function, the sequence 
of its coefficients is diverging and, hence, the series 
is also diverging for a convergent Boltzmann function. 
One-dimensional calculations that we have per- 
formed show the following. For small values of u, 
the series approximates the Boltzmann function better 
the higher the powers that are included. For large 
values of u, the series diverges more strongly the 
higher the powers that are included. The best possible 
approximation (to a convergent Boltzmann fu. nction) 
is usually obtained with a series with powers <-4, or 
with a series with damping factors at the higher 
powers. Thus, it appears that, for large values of u, 
a variety of solutions is offered by the expansions (3) 
depending on what powers of the potential param- 
eters are actually included. We note that, for large 
values of u, Matsubara (1975a, b) has set f ( u ) = 0  
beyond a certain maximum value of u. 

6. Discussion 

Since Mair, Barnea, Cooper & Rouse (1974) intro- 
duced the /32 terms into the temperature factor for 

* See deposition footnote. We are indebted to Drs J.K. Macken- 
zie and S.L. Mair for having drawn our attention to the fact that 
the lAP expansion (3) also does not converge to a convergent 
Boltzmann function. 
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cubic site symmetry there seems to be common agree- 
ment that the temperature factor is thereby improved. 
Thus, Moss, McMullan & Koetzle (1980) and Kontio 
& Stevens (1982) also used the/32 terms. Some people 
consider the Willis expansion (4.11 ), in which the/32 
terms are neglected, to be incorrect because y and 
/32 terms are of the same order in the van Hove order 
parameter A. Obviously, the aim is to approximate 
the Boltzmann function as closely as possible. We 
shall now discuss the problem in the light of our 
present results. 

The aim (to approximate the Boltzmann function) 
rests on the assumption that the Boltzmann function 
itself represents the best p.d.f, possible. We give differ- 
ent arguments for the two cases, the divergent and 
the convergent Boltzmann function. Clearly, this 
assumption cannot be applied to the expansion (3) 
when the signs of the parameters correspond to a 
divergent Boltzmann function. In this case many 
forms of the expansion (3) may represent an accep- 
table p.d.f, whereas the Boltzmann function itself 
breaks down. For a convergent Boltzmann function, 
the validity of the assumption has not been proved 
because the Fourier transform of the Boltzmann func- 
tion is generally unknown (see, however, the Appen- 
dix) and thus a temperature factor corresponding 
exactly to the Boltzmann function has never been 
used. Mackenzie & Mair (private communication) 
suggest evaluation of the Fourier transform of the 
Boltzmann function by numerical integration. Until 
now, the assumption that the convergent Boltzmann 
function represents the ideal p.d.f., which should be 
approximated as closely as possible, has been estab- 
lished neither by theoretical arguments nor by experi- 
mental evidence and is a matter of belief. We further 
point out a limitation of the Boltzmann function as 
a p.d.f, if it could be used in the refinement. Since 
the Boltzmann function is not allowed to diverge, 
some of the parameters are not allowed to change 
their sign during the refinement. 

Historically, the Boltzmann distribution has only 
proved to be a physically useful idea that enables one 
to establish an acceptable form of the p.d.f., like the 
expansion (3). From the mathematical point of view, 
the Boltzmann distribution is distinguished by making 
use of the particularly convenient form of the poten- 
tial expansion (1), for which one has to pay with 
severe deficiencies; see the Appendix. To deduce that 
the Boltzmann distribution also represents a good 
p.d.f, is at least premature. In our opinion, one should 
be flexible in choosing a p.d.f, and examine its useful- 
ness by means of experimental data. Apart from 
several forms of the lAP series (3), the Gram-Charlier 
series has proved to be useful (Zucker & Schulz, 1982; 
Kuhs, 1983). Willis & Pryor (1975) report on several 
structures with cubic site symmetry where the Willis 
(1969, equation 4.11) expansion, which is linear in 
/3, has been used successfully. More recently, Tanaka 

& Marumo (1982, 1983), working on KCuF 3 and 
a-A1203, showed that the Willis expansion proved to 
be satisfactory. With AI(4) in the structure of VAl,o.42 
(Kontio & Stevens, 1982), the contribution from /32 
(--,0.090) to the h 2 term cannot be neglected compared 
to that from y (0.311)* and thus may be important 
in the interpretation of the potential parameters. 
However, in the refinement Kontio & Stevens (1982) 
used the cumulant expansion (and not the IAP tem- 
perature factor). Hence, this example also does not 
prove the need to use the/32 term in the refinement. 

We conclude that the Willis (1969, equation 4.11) 
expansion should not be rated 'incorrect' relative to 
other expansions that contain higher powers of the 
potential parameters, for the following three reasons. 

(1) If the signs of the potential parameters in the 
expansion are such that thc corresponding Boltzmann 
function diverges, the Boltzmann function does not 
form a p.d.f, and there is no reason for trying to 
approximate it. 

(2) The convergent Boltzmann function has not 
been shown to be the best possible p.d.f., either by 
theoretical arguments or by experimental evidence. 

(3) Since the series (3) diverges in any case and 
can never approximate the (convergent) Boltzmann 
function sufficiently closely, it is difficult to assess the 
usefulness of the higher powers of the potential par- 
ameters. In general, the mere expansion by a power 
higher does not necessarily constitute the better pro- 
posal for a p.d.f. 

Since there is no formal expression for the anhar- 
monic temperature factor for which one can claim 
unique correctness, we suggest flexibility in the choice 
of the p.d.f. At present, the usefulness of a given p.d.f. 
(provided it is non-negative everywhere) can be 
assessed only if the p.d.f, has been examined in a 
particular problem with the available set of experi- 
mental data. 

If one wishes to calculate the course of the potential 
when the refinement is completed, this can always be 
done according to the procedure suggested by Zucker 
& Schulz (1982). These authors rewrite the Boltzmann 
approach according to 

V(u)=-kBT[ln f ( u ) - l n  f(u=O)]. (19) 

With (19), it is assumed that the p.d.f, f(u)  is non- 
negative, i.e. that a certain minimum quality of the 
p.d.f, has been obtained. The potential can even in 
those cases be calculated from (19) where the 
Boltzmann function (2) is divergent (e.g. y negative 
with cubic site symmetry) but the temperature factor 
(4) has been used in the refinement. Equation (4) 
then leads to a p.d.f. (3) that can be used in (19). 
Thus, with a free choice of the p.d.f, one loses the 
possibility of interpreting the parameters directly as 
potential parameters but, with (19), one has gained 

* See deposition footnote. 
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the physically meaningful possibility of calculating 
the course of the potential. 

I thank Professor Dr W. Gromes, Mathematisches 
Institut der UniversitSt Marburg, for a discussion on 
the problem of divergence and Dr S. L. Mair, Clayton, 
Australia, for her correspondence on the higher 
powers of the potential parameters, which was 
adverse but stimulating. 

APPENDIX 

We indicate the problems of Fourier transformation 
of the Boltzmann function (2) when it is used with 
the potential expansion (1). The Boltzmann function 
is divergent [f(u) ~ oo for u ~ oo] and its Fourier trans- 
form does not exist if (i) the highest power of u is 
odd and (ii) if the highest power of u is even and has 
predominantly positive coefficients. If the Boltzmann 
function is convergent its Fourier transform is gen- 
erally unknown but can be derived for the special 
case of site symmetry 1 from a known Fourier trans- 
form relation. Kendall & Stuart (1969, p. 158) give 
the Fourier transform of the one-dimensional 
Edgeworth series, which is real for even powers. 
Setting up the corresponding inverse Fourier trans- 
form relation and rewriting it into a Fourier transform 
relation, we show that the Fourier transform of the 
Boltzmann function with even powers u (site sym- 
metry 1) is given by an Edgeworth series in reciprocal 
space, with differential operators occurring in the 
exponent. Thus, for example, 

-t-oo 

f exp (-½x 2 -  ax 4) exp (itx) dx  

--OO 
=(27/') I/2 e x p ( - a O 4 )  e, xp( -½t2) ,  (A1) 

a > 0 .  D is a differential operator operating on 
exp (-½t2). Expressions like (A1) cannot be exactly 
evaluated analytically. Approximations in which the 
exponential function, containing the differential 

operators, is expanded into a series, can be so evalu- 
ated but no longer represent the exact Fourier trans- 
form of the Boltzmann function. 
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Abstract 

It is shown that the cumulant expansion of the anhar- 
monic temperature factor is a function whose inverse 
Fourier transform either does not exist or has negative 

regions. Since the probability density function for an 
atom should always be non-negative, the inverse 
Fourier transform of the cumulant expansion may be 
a poor approximation to the true probability density 
function. Correspondingly, the cumulant expansion 
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